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Abstract. The statistical model of hadronization succeeds in reproducing particle abundances
and transverse momentum spectra in high energy collisions of elementary particles as well as of
heavy ions. Despite its apparent success, the interpretation of these results is controversial and
the validity of the approach very often questioned. In this paper, we would like to summarize
the whole issue by first outlining a basic formulation of the model and then comment on the
main criticisms and different kinds of interpretations, with special emphasis on the so-called
“phase space dominance”. While the ultimate answer to the question why the statistical model
works should certainly be pursued, we stress that it is a priority to confirm or disprove the
fundamental scheme of the statistical model by performing some detailed tests on the rates of
exclusive channels at lower energy.

.

1. Introduction

The statistical model is a model of hadronization, thus aiming at reproducing the quantitative
features of this process. Its founding ideas date back to Fermi [1] and Hagedorn [2], though
a basic and precise formulation of this model has been lacking ever since; providing such a
formulation is among the goals of the present work.

In the statistical hadronization model (SHM), the physical picture of a high energy collision
is that of a QCD-driven dynamical process eventually giving rise to the formation of extended
massive objects (called clusters or fireballs) which decay into hadrons in a purely statistical
fashion. The number, as well as the kinematical and internal quantum properties of these objects
are determined by the previous dynamical process and are thus not predictable within the SHM
itself; they can be hopefully calculated with perturbative QCD, like in other hadronization
cluster models [3]. A distinctive feature of the statistical model in comparison with other cluster
models is that clusters have a finite spacial extension. This is actually a crucial assumption, the
one which ultimately allows to make calculations.

Probably, the best known model with relativistic extended massive objects is the bag model
[4] and indeed the SHM can be considered as a model for the strong decays of bags. On the
other hand, on the experimental side, there is now strong evidence of the finite extension of
the hadron emitting sources in high energy collisions, from the observed quantum interference
effects in the production of identical particles. It is therefore reasonable to take a finite volume
of the hadron sources as a key ingredient for a hadronization model.



In this paper, we first expound a precise formulation of the model starting from the very basic
assumption of local statistical equilibrium (Sect. 2). We then comment on various criticisms and
interpretations of the successes of this model, especially in elementary collisions (Sect. 3). The
paper is concluded with a discussion about the possible fundamental physical meaning of the
model (Sect. 4).

2. The statistical model: a fundamentalist approach

The basic idea of the model is very simple and it lies in two assumptions. The first is that
in the late stage of a high energy collision, some extended massive objects, defined as clusters,
are produced which decay into hadrons at a critical value of energy density or some other
relevant parameter. The second, fundamental, assumption of the statistical model is that all

multihadronic states within the cluster compatible with its quantum numbers are equally likely.
This makes the model predictive as to the production rates of hadrons and resonances from the
clusters so that SHM might be regarded as an effective model of the decays of hadronic extended
relativistic massive objects. This idea was essentially introduced within the statistical bootstrap
model by Hagedorn [2], who, by identifying clusters with massive resonances, predicted the
hadronic mass spectrum to rise exponentially. This seems to be still a very succesful prediction
[5], but is neither implied nor required by the SHM alone: in principle, clusters need not to be
identified with actual resonances to decay statistically.

Despite the apparent simplicity of the key assumption of the SHM, it is not as straightforward
as it might seem at first sight to calculate the cluster decay rates into different multi-hadronic
states. These difficulties arise from the fact that the basic postulate only tells us that localized
states are equiprobable, yet these states are essentially different from the observable asymptotic
states. As we will show, such difference is not an issue when the volume is sufficiently large and
can be disregarded in most applications where the canonical or grand-canonical ensemble are
used, but it is relevant at a fundamental level of description and must be taken into account
when the volume is small, i.e. less than O(10) fm3.

Suppose that we can describe the cluster as a mixture of localized multi-hadronic states |hV 〉
and, according to the basic assumption, all states have the same statistical weight. Then, one
can write down a microcanonical partition function as:

Ω =
∑

hV

〈hV |Pi|hV 〉 (1)

where Pi is the projector over all conserved quantities in strong interactions, namely energy-
momentum, angular momentum, parity, isospin etc. It must be emphasized that these states |hV 〉
are not the asymptotic observable free states of the Fock space which can be labelled with particle
multiplicities for each species {N1, N2, . . . , NK} ≡ {Nj}, their momenta and helicities. Thus,
the probability of observing a set of particles with four-momenta p1, . . . , pN is not 〈hV |Pi|hV 〉
and, moreover, it cannot be obtained unambiguously from the Eq. (1).

In order to define a suitable probability of observing an asymptotic multi-hadronic state |f〉,
one can recast the microcanonical partition function (1) by using the completeness of states
|f〉’s:

Ω =
∑

hV

〈hV |
∑

f

|f〉〈f |Pi|hV 〉

=
∑

f

〈f |Pi

∑

hV

|hV 〉〈hV |f〉 ≡
∑

f

〈f |PiPV |f〉 (2)

where PV =
∑

hV
|hV 〉〈hV | is the projector on the localized states. We note that the last

expression of Ω in Eq. (2) is a proper trace, whereas it was not in Eq. (1) as the states |hV 〉 do



not form a complete set, i.e. they are not a basis of the Hilbert space. Looking at Eq. (2), it is
tempting to set the probability ρf of the state |f〉 as proportional to 〈f |PiPV |f〉. Yet, one could
have worked out Ω differently from Eq. (2), for instance (if |hV 〉 are properly normalized):

Ω =
∑

hV

〈hV |Pi|hV 〉 =
∑

hV

〈hV |PV Pi|hV 〉

=
∑

hV

〈hV |
∑

f

|f〉〈f |PV Pi|hV 〉

=
∑

f

〈f |PV Pi

∑

hV

|hV 〉〈hV |f〉 =
∑

f

〈f |PV PiPV |f〉 (3)

whence ρf could now be set as proportional to 〈f |PV PiPV |f〉. The latter expression is different
from 〈f |PiPV |f〉 unlike [Pi,PV ] = 0, which is not the case as long as Pi includes conservation of
energy and momentum (we will see this more in detail in the next section).

Which of the two probabilities:

〈f |PV PiPV |f〉 and 〈f |PiPV |f〉 (4)

is the correct one? A well-defined probability should meet two requirements:

• positivity;

• respect conservation laws, i.e. ρf = 0 if |f〉 has not the same quantum numbers as the
initial state; in other words, ρf = 0 if Pi|f〉 = 0.

The leftmost expression in Eq. (4) fulfills the positivity requirement in that:

〈f |PV PiPV |f〉 = 〈PV f |Pi|PV f〉 = a−1〈PV f |P2
i |PV f〉 = a−1〈PiPV f |PiPV f〉 ≥ 0 (5)

where we have used the hermiticity of Pi,PV and the fact that P2
i = aPi through a positive

divergent constant a 1. However, the second requirement is not fulfilled: ρf turns out to be not
vanishing even for states |f〉 which do not have the same energy-momentum as the initial state.

On the other hand, the rightmost expression in (4) manifestly fulfills the conservation
requirement because Pi has |f〉 as its argument, but, on the other hand, it is not positive
definite. Positivity is recovered by changing the rightmost expression in Eq. (4) into:

ρf ∝ 〈f |PiPV Pi|f〉 (6)

i.e. by plugging one more projection operator on the initial state. Thereby:

〈f |PiPV Pi|f〉 = 〈Pif |PV |Pif〉 = 〈Pif |P2
V |Pif〉 = 〈PV Pif |PV Pif〉 ≥ 0 (7)

where now we have used the idempotency of PV . The definition (6) of the probability leads
to a microcanonical partition function which differs from the proper one (1) just by a positive
(divergent) constant which is anyhow irrelevant for the calculation of averages. Indeed:

tr(PiPV Pi) = tr(P2
i PV ) = a tr(PiPV ) = aΩ (8)

where Eq. (2) has been used.
The leftmost definition of the probability in Eq. (4) was in fact used in ref. [6] to work out

the rates of multi-hadronic exclusive channels {Nj} in the SHM. Although breaking energy-
momentum conservation, the expressions of these rates are the same as those obtained from

1 The divergence of this constant is owing to the non-compactness of the Poincaré group. This can be understood
by considering the projector on energy-momentum δ

4(P − Pop)



integrating Eq. (6) over momenta of final particles. An attractive feature of this definition is
that it can be written formally, with Pi ≡ |i〉〈i|, as:

ρf ∝ |〈f |PV |i〉|2 (9)

i.e. it looks similar to a transition probability. However, the expression (6) seems to be the best
suited because it naturally meets both aforementioned basic requirements.

According to the definition (6), the cluster is regarded as the mixture of states:

∑

hV

Pi|hV 〉〈hV |Pi (10)

unlike in the leftmost definition in Eq. (4), where the mixture turns out to be:

∑

hV

|hV 〉〈hV |Pi|hV 〉〈hV | (11)

We think that a mixed state where Pi|hV 〉 are equiprobable, like in (10) is the most appropriate
definition of microcanonical ensemble because any state in the mixture has actually the same
quantum numbers, including energy and momentum, of the cluster.

2.1. The microcanonical ensemble

Once a satisfactory definition of the probability of observing an asymptotic multi-hadronic state
is found, that is Eq. (6), we can start working it out to obtain tractable formulae. We start by
first developing the projector Pi defining the microcanonical ensemble.

In principle, in the microcanonical ensemble, all conserved quantities should be included:
energy, momentum, angular momentum, parity, internal charges and C-parity (if the cluster is
neutral). The correct way to implement these conservation laws is to project the multi-particle
states onto the irreducible state of the full symmetry group which defines the initial state, i.e.
the hadronizing cluster. The full symmetry group is the product of the extendend Poincaré
group IO(1,3)↑, the isospin SU(2), the U(1)’s related to conserved additive charges and the
discrete group Z2 of charge conjugation if the initial state is neutral. Accordingly, the projector
Pi can be factorized as:

Pi = PP,J,λ,πPχPI,I3PQ (12)

where P is the four-momentum of the cluster, J its spin, λ its helicity, π its parity, χ its C-
parity, I and I3 its isospin and its third component and Q = (Q1, . . . , QM ) a set of M abelian
(i.e. additive) charges such as baryon number, strangeness, electric charge etc. Of course, the
projection Pχ makes sense only if I = 0 and Q = 0; in this case, Pχ commutes with all other
projectors.

The projector PP,J,λ,π onto the irreducible state (transforming according to an irreducible
unitary representation ν of IO(1,3)↑) with definite four-momentum, spin, helicity and parity can
be written by using the normalized invariant measure µ of the Poncaré group as:

PP,J,λ,π =
1

2

∑

z=I,Π

dim ν

∫

dµ(gz) D
ν†(gz)

i
i U(gz) (13)

where z is the identity or space inversion Π, gz ∈ IO(1, 3)↑±, Dν(gz) is the matrix of the irreducible
representation ν the initial state i belongs to, and U(gz) is the unitary representation of gz in
the Hilbert space. Similar integral expressions can be written for the projectors onto internal
charges, for the groups SU(2) (isospin) and U(1) (for additive charges). Although projection



operators cannot be rigorously defined for non-compact groups, such as Poincaré group, we
will maintain this naming relaxing mathematical rigour. In fact, for non compact-groups, the
projection operators cannot be properly normalized so as to P2 = P and this is indeed related
to the fact that |i〉 has infinite norm. Still, we will not be concerned with such drawbacks
thereafter, whilst it will be favourable to keep the projector formalism. Working in the rest
frame of the cluster, with P = (M,0), the matrix element Dν†(gz)

i
i vanishes unless the Lorentz

transformations are pure rotations and this implies the reduction of the integration in (13) from
IO(1,3)↑ to the subgroup T(4) ⊗ SU(2) ⊗ Z2 [6]. In fact, the general transformation of the
extended Poincaré group gz may be factorized as:

gz = T(x)ZΛ = T(x)ZLn̂(ξ)R (14)

where T(x) is a translation by the four-vector x, Z = I,Π is either the identity or the space
inversion and Λ = Ln̂(ξ)R is a general orthocronous Lorentz transformation written as the
product of a boost of hyperbolic angle ξ along the space-like axis n̂ and a rotation R depending
on three Euler angles. Thus Eq (13) becomes:

PP,J,λ,π =
1

2

∑

Z=I,Π

dim ν

(2π)4

∫

d4x

∫

dΛ Dν(T(x)ZΛ)i∗i U(T(x)ZΛ)

=
1

2

∑

Z=I,Π

dim ν

(2π)4

∫

d4x

∫

dΛ eıP ·xπzDν(Λ)i∗i U(T(x))U(Z)U(Λ) (15)

where z = 0 if Z = I and z = 1 if Z = Π. In the above equation, the invariant measure d4x
of the translation subgroup has been normalized with a coefficient 1/(2π)4 in order to yield a
Dirac delta, as shown later. Furthermore, dΛ is meant to be the invariant normalized measure
of the Lorentz group, which can be written as [7]:

dΛ = dLn(ξ) dR = sinh2 ξdξ
dΩn̂

4π
dR (16)

dR being the well known invariant measure of SU(2) group, ξ ∈ [0,+∞) and Ωn̂ are the angular
coordinates of the vector n.

If the initial state |i〉 has vanishing momentum, i.e. P = (M,0), then the Lorentz
transformation Λ must not involve any non-trivial boost transformation with ξ 6= 0 for the
matrix element Dν(Λ)i∗i not to vanish. Therefore Λ reduces to the rotation R and we can write:

PP,J,λ,π =
1

2

∑

Z=I,Π

1

(2π)4

∫

d4x (2J + 1)

∫

dR eıP ·xπzDJ(R)λ∗λ U(T(x))U(Z)U(R) (17)

Since [Z,R] = 0, we can move the U(Z) operator to the right of U(R) and recast the above
equation as:

PP,J,λ,π =
1

(2π)4

∫

d4x eıP ·xU(T(x))(2J + 1)

∫

dR DJ(R)λ∗λ U(R)
I + πU(Π)

2

= δ4(P − Pop)(2J + 1)

∫

dR DJ(R)λ∗λ U(R)
I + πU(Π)

2
(18)

The Eq. (18) is indeed the final general expression of the projector defining the proper
microcanonical ensemble with P = (M,0), in which all conservation laws related to space-
time symmetries are taken into account. The appeal of the above expressionresides in the



factorization of projection operators onto the energy-momentum P , spin-helicity J, λ and parity
π of the cluster.

Also the projectors onto isospin PI,I3 and onto additive charges PQ in Eq. (12) can be given
an integral expression by using the invariant SU(2) and U(1) group measures. The projector
on a state with definite C-parity χ can be simply written as (I + χC)/2 where C is the charge-
conjugation operator.

In most calculations, conservation of angular momentum, isospin, parity and C-parity is
disregarded and only energy-momentum and abelian charges conservation is enforced. 2 This is
expected to be an appropriate approximation in high energy collisions, where many clusters are
formed and the neglected constraints should not play a significant role. On the other hand, they
are important in very small hadronizing systems (e.g. pp̄ at rest [8]) whereby the full projection
operation in Eq. (12) should implemented. For the restricted microcanonical ensemble, it can
be easily seen from Eqs. (12,18) that the projector can be rewritten as:

Pi = δ4(P − Pop) δQ,Qop (19)

and, if |f〉 is an eigenstate of four-momentum and charges, Eq. (6) as:

ρf ∝ ω δ4(P − Pf ) δQ,Qf
〈f |PV |f〉 (20)

where ω is a divergent constant, i.e. the whole space-time volume.

2.2. The effects of finite volume

The second part of the calculation involves the projection onto localized states. The projector
PV can be written as:

PV =
∑

{Ñj},k

|{Ñj}, k〉〈{Ñj}, k| (21)

where {Ñj} are the occupation numbers of the particles in the cluster and k the variables
labelling their kinematical modes, e.g. three integers in case of a parallelepipedon box with
fixed or periodic boundary conditions. It should be pointed here that in the usual statistical
model calculations, the interactions are taken into account by including all known resonances
as free particles (in the cluster) with a distributed mass, according to a formalism developed
by Dashen, Ma and Bernstein [9, 10]. In principle, the use of (21) to calculate probabilities
like in (6) entails some difficulty because a localized state |{Ñj}, k〉 is not an eigenstate of the
actual particle number, which is defined in terms of the operators creating and destroying free
asymptotic states over the whole space. In fact, a N -pion state in the cluster has non vanishing
components on all free states of the pion field, i.e. on the states with 0, 1, 2, . . . pions. Therefore,
the projection should be performed in a full quantum relativistic field approach by identifying
localized states as states of the quantum fields associated to particles and vanishing out of the
cluster region. Hence, the projector PV should be rather written as, in case of only one scalar
particle:

PV =

∫

V
Dψ|ψ〉〈ψ| (22)

and Eq. (6) developed accordingly. In Eq. (22) |ψ〉 ≡ ⊗x|ψ(x)〉 andDψ is the functional measure;
the functional integration must be performed over all functions having as support the cluster
region V . Altogether, determining production rates involves the calculation of the statistical
mechanics of a field in the microcanonical ensemble.

2 Note that the relevant set of states is still defined microcanonical ensemble and we will comply with this
tradition.



Nevertheless, if the cluster size is sufficiently larger than the Compton wavelenght of the
particles involved, quantum field corrections are expected to be small and the eigenstates of
particle number operators in the whole space essentially correspond to those of the particle
number operators in the cluster. Otherwise stated, even though a localized N -pion state has
non vanishing components on all free states of the pion field, the dominant one will be that on
the asymptotic N pion states. The largest implied Compton wavelenght in a multi-hadronic
system is indeed the pion’s one λπ ≃ 1.4 fm; this is the minimal size of the cluster below which
quantum field corrections cannot be disregarded.

Hence, for clusters which are sufficiently larger than λπ we can use the approximation:

〈{Nj}, p|{Ñj}, k〉 6= 0 iff {Nj} = {Ñj} (23)

where p labels the set of kimatical variables (namely momenta and helicities) for the asymptotic
free states |f〉 = |{Nj}, p〉. Now, by using Eq. (23) the probability of a final state (20) can be
calculated and reads:

ρ{Nj},p ∝ δ4(P −
∑

i

pi) δQi,
∑

j
qj

∑

k

|〈{Nj}, p|{Nj}, k〉|2 (24)

where the pi’s are the four-momenta of the particles in the final state. The rightmost factor
in the above equation can be calculated as a cluster decomposition and, in the framework of
non-relativistic quantum mechanics, a relevant expression has been obtained in ref. [11] in the
limit of large volumes and in ref. [6] taking into account the finite volume. If j labels the hadron
species j = 1, . . . ,K and p now the set of particles’ four-momenta:

ρ{Nj},p ∝ δ4(P −
∑

i

pi)
∏

j

∑

{hnj
}

(∓1)Nj+Hj(2Jj + 1)Hj

∏Nj

nj=1 n
hnj

j hnj
!

Hj
∏

lj=1

Fnlj
(25)

where {hnj
} is a partition of the integer Nj in the multiplicity representation , i.e. Nj =

∑Nj

nj=1 njhnj
; Hj =

∑Nj

nj=1 hnj
and:

Fnl
=

nl
∏

il=1

1

(2π)3

∫

V
d3x eıx·(pcl(il)

−pil
) (26)

are integrals over the cluster region V , cl being the cyclic permutation of the integers 1, . . . , nl.
For large volumes, the dominant term in the cluster decomposition (25) is obtained by taking
{hnj

} = (Nj, 0, . . . , 0), implying cl ≡ I and reads:

ρ{Nj},p ∝
[

∏

j

V Nj (2Jj + 1)Nj

(2π)3NjNj !

]

δ4(P −
∑

i

pi) (27)

3. Phase space dominance, Lagrange multipliers and all that

Despite its apparent success in reproducing observables related to hadronization process like
particle multiplicities and transverse momentum spectra [12, 13, 14, 15] the statistical model
is not very popular among high energy physicists. Besides the fact that, thus far, the featured
apparent statistical equilibrium is not derivable from QCD (and it will remain so for a probably
long time), one of the most bothering point seems to be the presence of thermodynamical
quantities and chiefly temperature. Moreover, this fairly constant hadronization temperature
(i.e. around 160 MeV [15]) is amazingly close to the estimated critical temperature of QCD and
this obviously raises the question of its meaning.



In the basic microcanonical formulation of the model, described in the previous sections,
one deals with mass and volume of clusters, but it can be easily shown that if those become
sufficiently large one can perform calculations in the canonical ensemble, which is far easier to
handle, thereby introducing temperature through a saddle-point expansion [6, 16]. In the case of
hadron gas, this is possible at relatively low values of masses and volumes [16, 17], around 8 GeV
and 20 fm3. Yet, talking about temperature in such small systems seems to be daring for the
received wisdom of most physicists who, as soon as the word temperature is spoken, are led to
think of a large system which has undergone a long cooking process before reaching equilibrium.
It is widely believed (the author is included) that this cannot occur after hadronization at a
level of formed hadrons through inelastic collisions: the system expands too quickly to allow
this. If statistical equilibrium is genuine, it must be an inherent property of hadronization itself,
i.e. hadrons are born at equilibrium as stated by Hagedorn many years ago [10] and reaffirmed
by others more recently [13, 18, 19, 20].

Therefore, there have been some attempts to account for the success of the statistical model
whose conclusions may be roughly clustered as follows:

(i) the results of the statistical model can be obtained from other models with some
supplementary assumption or invoking some special, so far neglected, mechanism;

(ii) the statistical model grasps some truth of the hadronization process, but the apparent
thermal-like features are an effect of a special property of the quantum dynamics governing
hadronization, which tends to evenly populates all final states: this is defined as phase space

dominance;

(iii) the results of the statistical model are somehow trivial, due to the large multiplicities
involved which eventually make the multi-hadronic phase space almost evenly populated.

In the following I will comment on specific papers discussing this subject, whose attitude,
on the basis of my personal understanding, is assigned to one (or more) of the previous points.
I apologize in advance with the quoted authors for possible misunderstanding and too limited
summary of their thought.

Ideas of the class (i) are proposed e.g. in refs. [21, 22]. The typical exponential shape of
the thermal spectra are explained in the framework of the string model, by adding to the basic
picture additional fluctuations of the string tension parameter κ. The effect of the fluctuations
is to broaden the gaussian shape of the pT spectra in the string model, turning it into an
exponential one. Of course, this mechanism is one of the possible choices of nature, though
very difficult to disprove. In general, it is certainly possible to make an existing model more
complicated to account for some otherwise more straightforward result in another model, and
this is precisely where the criterium called Occam razor intervenes: between two models equally
able to explain observations, the most economical should prevail. It is fair to say here that
the string model has been tested against more observables and that the SHM should be tested
against the same set of observables. Still, it is also true that the effective implementations of the
string models are plagued by the need of many free parameters to reproduce the data and this
raises many doubts about its predictive power [23]. In fact, there is an ongoing work [16, 24]
to implement SHM as hadronization model in an event generator to allow testing observables
other than multiplicities and single particle inclusive transverse momentum spectra.

The paper by Hormuzdiar et al [25] is the one where the idea (ii) is certainly argued more in
detail. The basis of the whole argument is the similarity between the (classical) phase space of
the set of particles {Nj}, obtained by integrating (27) over momenta:

V N

(2π)3N

{

∏

j

1

Nj !

[

∫

d3p

]Nj
}

δ4(Pi −
∑

i

pi) (28)



where N =
∑

j Nj , and the general expression of the decay rate into the channel {Nj} of a
massive particle (cluster) in relativistic quantum mechanics:

Γ{Nj} =
1

(2π)3N

{

∏

j

1

Nj !

[

∫

d3p

2ǫj

]Nj
}

δ4(P −
∑

i

pi)|Mfi|2 (29)

where |Mfi|2 is the Lorentz-invariant dynamical matrix element governing the decay. Assuming,
for sake of simplicity, all spinless particles, |Mfi|2 may in principle depend on all relativistic
invariants formed out of the four-momenta of the N particles, as well as on all possible isoscalars
formed out of the isovector operators Ii. Suppose that |Mfi|2 = αN , so that the whole dynamics
reduces to introduce the same multiplicative constant α for each particle in the channel. Then,
it is possible to calculate quite easily the generating function of the multi-particle multiplicity
distribution starting from Eq. (29):

G(λ1, . . . , λK) =
∑

{Nj}

Γ{Nj}

∏

j

λ
Nj

j

=
∑

{Nj}

{

∏

j

αNjλ
Nj

j

(2π)3NjNj !

[

∫

d3p

2ǫj

]Nj
}

δ4(P −
∑

i

pi)

=
1

(2π)4

∫

d4x eıP ·x exp





∑

j

α

(2π)3

∫

d3p

2ǫj
e−ıpj ·xλj





=
1

(2πı)4

∫

d4z eP ·z exp





∑

j

α

(2π)3

∫

d3p

2ǫj
e−pj ·zλj



 (30)

where a Fourier decomposition of the four-dimensional delta has been used and the integral Wick
rotated by using z = ıx. If P 2 is sufficiently large, we can expand the above integral around the
saddle-point z0 obtained by solving the equation:

P +
∂

∂z

∑

j

α

(2π)3

∫

d3p

2ǫj
e−pj ·zλj = 0 (31)

If P = (M,0) it is not difficult to realize that z0 = (β,0) and the generating function can be
approximated as:

G(λ1, . . . , λK) ∼ exp





∑

j

α

(2π)3

∫

d3p

2ǫj
e−βǫjλj



 (32)

so that the mean number of particles of the species j reads:

〈n〉j =
α

(2π)3

∫

d3p

2ǫj
e−βǫj (33)

which is very similar to a thermal distribution:

〈n〉j =
V

(2π)3

∫

d3p e−βǫj (34)

were not for the different measure in the momentum integral. As it should be clear from its
derivation, the constant β in Eq. (33) is certainly not a temperature, rather a soft scale parameter



which is related to the effective finite interaction range. Yet, the ratios of average multiplicities
of particles of different species mimic a thermodynamic behaviour. This is the so-called phase

space dominance. The authors of ref. [25] work out a more specific example based on QED and
they conclude, quite reasonably, that a fairly good fit to particle multiplicities may be provided
if integral expressions like (33) are used instead of an actual Boltzmann integral. I want to even
reinforce their statement by adding that the actual fits to particle multiplicities in e+e−, pp
and other collisions relied on supplementary assumptions which are not expected to be exact
in a basic statistical model framework, so that deviations from the “pure” statistical model
predictions may arise which can be of the same order of the difference between the actual SHM
and the formula (33).

Thus, I subscribe to the argument in ref. [25] but it should be stressed that the just described
phase space dominance is a highly non-trivial assumption. In fact, the recovery of a thermal-
like expression like (33) ought to a very special form of the matrix element |Mfi|2, where both
the dependence on kinematical and isospin invariants was disregarded. If a different form, still
perfectly legitimate and possible, is assumed, the thermal-like behaviour is spoiled. For instance,
one could have:

|Mfi|2 ∝ α3Mf(αm1) · . . . · α3Mf(αmN ) · g(I1) · . . . · g(IN ) (35)

with a generic factor f(αmj)g(Ij) for each particle depending on its mass mj and its isospin Ij
and on a single scale α whose dimension is the inverse of an energy; the factors α3M in Eq. (35)
are introduced in order to make the average particle multiplicities in the large multiplicity limit
proportional to the mass of the cluster M :

〈n〉j =
α3Mf(mj)g(Ij)

(2π)3

∫

d3p

2ǫj
e−βǫj (36)

It is not difficult to realize that the production function Eq. (36) might be dramatically different
from the thermal one. It should be emphasized that also a factorizable dynamical matrix element
depending only on masses and isospins like in Eq. (35) is quite an exceptional one. In fact, in
principle, there could be dependence on other independent invariants like (pi + pj)

2, Ii · Ij,
Ii · (Ij × Ik) etc. Therefore, an observed phase space dominance in multihadron production is
not a trivial fact and tells us something important about the characteristics of the underlying
non perturbative QCD dynamics, besides providing us with an empirically good model.

Similar arguments are presented in ref. [26] and, more extensively, in ref. [27] where the
concept of phase space dominance is even more explicitely defined. There, quantities like the
previous β arising from a saddle-point asymptotic expansion and mimicking a temperature are
called “Lagrange multipliers” just to emphasize the difference from an actual temperature.
However, in the effort of analyzing the meaning of the statistical model results, two very
questionable statements are introduced:

• that the so-called Lagrange multipliers have no physical meaning even for a properly defined
phase space integral like (28);

• that the phase space dominance is trivial when the average multiplicities are very large.

For the second point, the counter-argument is straightforward: just take f(m) = A exp(Cm2)
(though odd it might look) or, alternatively, g(I) = AI2 + C in Eq. (36) with A,C positive
constants depending on centre-of-mass energy and the thermal shape of mass production function
is destroyed for any multiplicity.

The first point is more subtle and requires a somewhat general discussion because there
seems to be some confusion as to what deserves to be called “thermal” and, conversely, what is
only “statistical”. If the word “statistical” is used to to mean some property of the dynamical



matrix element of being independent of most kinematical variables, like that leading to Eq. (33),
then of course it has nothing to do with a proper thermal thing. If, on the other hand, the
word “statistical” means, like in SHM, equal probability in phase space, where phase space is
appropriately measured with d3xd3p for any particle like in Eq. (28), and a volume is involved,
then “statistical” and “thermal” can be taken as synonimous (for purists only for sufficiently
large volumes) because there is no quantitative difference between them. In fact, what makes
the difference between Eq. (33) and a proper thermal formula is the measure in momentum
space and the absence of a volume. If, in a proper statistical mechanical framework, the two
conditions of statistical equilibrium and finite volume are met, temperature can be defined (e.g.
through a saddle point expansion) no matter how the system got to statistical equilibrium and
even in absence of an external bath. Many authors (e.g. [28]) take the definition T−1 = ∂S/∂E
where S is the entropy, a well defined quantity for any closed system. All other definitions of
temperature, be a Lagrange multiplier for the maximization of entropy at a fixed energy [29],
or a saddle point of the microcanonical partition function, should converge to the same value in
the limit of large volumes and are therefore physically meaningful temperature. Macroscopically
inspired definitions requiring physical exchange of energy with a heat reservoir are too restrictive,
and certainly not suitable for heavy ion collisions as well, where such a heat reservoir does not
exist. On the other hand, these definitions must coincide with the most general definition based
on statistical mechanics.

In the same spirit, some authors [29] try to make clear a distinction between the temperature
determined in the SHM by fitting particle abundances and a “proper” temperature which would
be achieved through inelastic reinteractions of formed particles. The former is called Lagrange
multiplier for the maximization of entropy, just to emphasize the difference. Again, I would
like to stress that there is no actual quantitative difference between those two temperatures
so that a hadronization temperature, if confirmed, can be properly called a temperature. One
can certainly make a distinction as to how statistical equilibrium was achieved, which is as
important as the statistical equilibrium itself, but if energy is equally shared among all possible
states within a finite (possibly large) volume, temperature is temperature no matter how the
system got to statistical equilibrium. What would make the exponential parameter fitted in the
framework of SHM different from an actual temperature can be only a quantitative difference,
like e.g. the difference between β in Eq. (33) and β in Eq. (34).

What can be done then to distinguish between a genuine statistical-thermal model and
other possible pseudo-statistical models like the one leading to the formula (33)? Besides
kinematical features, it would be desirable to bring out effects related to the finite volume, which
is a peculiarity of the statistical model. Indeed, the study of average inclusive multiplicities
or inclusive pT spectra does not allow clearcut conclusions because those observables are
not sensitive enough to different integration measures (i.e. V d3p versus d3p/2ǫ) and much
information is integrated away. A much more effective test would be studying the rates of
exclusive channels, i.e. Γ{Nj}/Γ{N ′

j
}, which are much more sensitive to the integration measure

in the momentum integrals and the shape of dynamical matrix element. Unfortunately, exclusive
channels can be measured only at low energy (some GeV) where none of the conservation laws,
including angular momentum, parity and isospin, can be neglected, as pointed out in ref. [8]
where pp̄ annihilation at rest has been studied in this framework. This makes calculations rather
cumbersome and difficult from the numerical point of view. None of the numerous previous
studies in literature has tackled the problem without introducing approximations unavoidably
implying large errors in the calculations. Fully microcanonical calculations including both four-
momentum and angular momentum conservation have not ever been done, and only recently
the increased computing power and purposely designed techniques allowed the calculation of
averages in the microcanonical ensemble, yet only with energy and momentum conservation
[30, 16].



4. What is the meaning of it?

Now that we have discussed in some detail the foundations of the statistical model, and possible
interpretations of its success, we are finally left with an inevitable question: what is the meaning
of this model in the framework of the basic theory of strong interactions, QCD? Otherwise stated,
is it possible to show from a more fundamental theory that extended massive objects such as
clusters exist and that the statistical filling of their multihadronic phase space effectively occurs?
Or, alternatively, that QCD implies a similar phenomenon (though quantitatively distinct and
distinguishable), called phase space dominance? As yet, we are not able to answer this question
because QCD has not been solved in the non-perturbative regime. Therefore, we will try to
argue about some simpler issue.

A first issue is the meaning of the mixture of states (10) that we have used to describe cluster
decays. From a quantum mechanical viewpoint, a mixture of states is only a mean to describe
our ignorance of the state of the system, which is always supposed to be a pure one, be it
entangled or not. We do not want here to slip into fundamental quantum mechanics problems
like decoherence and measurement, which may render a mixture of states an objective description
of the system. Just to make this issue a concrete one in our perspective, it suffices to mention a
(low energy) collision creating one cluster: of course this should be described with a pure state.

Let |i〉 the pure quantum state of a cluster; we can instance think of this state as that which
can be calculated in the bag model in terms of free parton fields states confined within a finite
region. We can write the transition amplitude to a localized multi-hadronic state within the
cluster:

〈hV |T |i〉 ∝ 〈hV |TPi|i〉 = 〈PihV |T |i〉 (37)

where the last equality follows from the conservation laws, that is the transition operator T
depends on the hamiltonian of strong interactions and ought to commute with the projector
onto conserved quantities. We can build up a basis of the Hilbert space including the |hV 〉
vectors by adding to them the multihadronic states localized outside V , i.e. the region denoted
with V̄ . We can then write:

I =
∑

hV

|hV 〉〈hV | +
∑

hV̄

|hV̄ 〉〈hV̄ | (38)

Essentially, the results of the statistical model can be recovered by assuming:

〈hV̄ |T |i〉 = 0 ∀|hV̄ 〉
|〈PihV |T |i〉|2 ≡ |chV

|2 = C (39)

where C is a constant, independent of the state Pi|hV 〉. The first of the two equations in (39)
states that no transition can occur to a state outside the cluster volume; the second, that the
transition probability is uniform for all localized states with the same quantum numbers as
the cluster itself. In a sense, these statements amount to restate the Hagedorn’s hypothesis of
a resonance as being made of a uniform superposition of hadrons and resonances. From the
previous assumptions and using Eqs. (37),(38), one can calculate the transition amplitude to an
asymptotic state |f〉:

〈f |T |i〉 = 〈f |




∑

hV

|hV 〉〈hV | +
∑

hV̄

|hV̄ 〉〈hV̄ |


T |i〉 =
∑

hV

〈f |hV 〉〈PihV |T |i〉 =
∑

hV

〈f |hV 〉chV
(40)

so that:

|〈f |T |i〉|2 = |
∑

hV

〈f |PihV 〉chV
|2 =

∑

hV

|〈f |PihV 〉|2C +
∑

hV 6=h′

V

〈f |PihV 〉〈Pih
′
V |f〉chV

c ∗h′

V
(41)



The first term in the right hand side of above equation is just proportional to (6). So, the
statistical model results are fully recovered if:

∑

hV 6=h′

V

〈f |PihV 〉〈Pih
′
V |f〉chV

c∗h′

V
≃ 0 (42)

or, in other words, if the amplitudes chV
=

√
C exp(ıφhV

) defined in (39) have random phases
φhV

, so to make the cross-term sum vanishing.
Hence, we have actually rephrased the question whether the statistical model can be an

effective model for the hadronization process actually driven by QCD on the question whether
the conditions (39) and (42) apply in a QCD-inspired picture. Since it is presently not possible
to answer to this question either, we are left with the more approachable problem of verifying
the predictions of the statistical model more thouroughly, as we have discussed at the end of
previous section.

5. Conclusions

We have discussed in some detail the ideas and the interpretations of the success of the statistical
model in reproducing soft observables in high energy collisions. It is certainly crucial to
understand the why of this success from firts QCD principles, but in the meantime it is useful
to stick to a more pragmatic attitude and ask ourselves whether we can test this model more
deeply than what has been done as yet. Particularly, by testing the model against exclusive
channel rates, we can assess whether the thermal-like features of inclusive particle production
show up at high energy because of the quasi-independence of dynamical matrix elements in
the soft non-perturbative regime (phase space dominance). In fact, it is difficult to bring out
deviations from a genuine statistical model from the analysis of inclusive quantities only because
too much information is integrated away. On the other hand, such deviations should show
up in more detailed observables, like, e.g., exclusive channel rates. In this regard, relevant
data are available only at low energy (some GeV in centre-of-mass frame) and this requires
the implementation of full microcanonical calculations, which have never been done without
introducing too drastic approximations. We have outlined an appropriate framework (in Sect. 2)
for the full microcanonical formulation of the model, on the basis of group projection techniques.
This the first step to implement the calculation; numerical work is currently ongoing.
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